

Psc-Package Guide

This is a guide for the tool Psc-Package [https://github.com/purescript/psc-package], which is a tool for managing PureScript dependencies via Git. It can be used directly or by external tools like Pulp [https://github.com/purescript-contrib/pulp].

Note

If there is a topic you would like more help with that is not in this guide, open a issue in the Github repo for it to request it.

Pages

	Introduction
	What is a Package Set?

	The psc-package.json format

	Installation
	Any platform

	npm

	Linux/OSX
	Nix

	Windows

	Travis

	Using Psc-Package from your project
	Frequently used commands

	Create a project

	Add dependencies

	Build a project

	Query the local package database

	Local package sets

	Usage with Nix
	justinwoo/psc-package2nix (Older)

	justinwoo/soba (Newer)

	Working with package sets

	FAQ
	Is there an easier way to manage my package sets than to edit packages.json? / How do I prepare a packages.json in some way other than editing JSON?

	How come I can’t install (some package) from the package set?

	Why are my changes not updated in my package set?

	Can I use Psc-Package with Nix?

Introduction

What is a Package Set?

A package set is a mapping from package names to:

	the Git repository URL for the package

	the Git ref which should be passed to git clone to clone the appropriate version (usually a tag name, but a SHA is also valid)

	the package’s transitive dependencies

A package set repository contains a packages.json file which contains all mapping information. psc-package uses this information to decide which repos need to be cloned.

The default package set is purescript/package-sets [https://github.com/purescript/package-sets], but it is possible to create custom package sets in many ways:

	by preparing a package set with Dhall using the packages.dhall from releases: https://github.com/purescript/package-sets/releases

	forking purescript/package-sets to your own repository

	creating a new one from scratch

. One benefit of using the default package set is that it is verified by a continuous integration process.

The psc-package.json format

Here is a simple project configuration:

{
 "name": "my-project",
 "set": "psc-0.13.6",
 "source": "https://github.com/purescript/package-sets.git",
 "depends": [
 "prelude"
]
}

It defines:

	The project name

	The package set to use to resolve dependencies. This corresponds to a branch or tag of the package set source repository if you use a Git URL as your source. Otherwise it serves as just an identifier.

	The package set source, which is either a repository Git URL or a path to a package set packages.json file.

	Any dependencies of the project, as a list of names of packages from the package set

Installation

Any platform

You can install Psc-Package on any platform by downloading the binary for your platform from the releases page [https://github.com/purescript/psc-package/releases] and copying it somewhere on your PATH.

npm

You can install Psc-Package through the npm package: https://www.npmjs.com/package/psc-package

globally
npm i -g psc-package

for your project
npm i -S psc-package

This should work on Linux, OSX, and Windows. Please report issues at https://github.com/justinwoo/npm-psc-package-bin-simple if this does not work as expected.

Linux/OSX

Nix

You should be able to use the derivation provided in nixpkgs: https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/compilers/purescript/psc-package/default.nix.

If you’re not on NixOS, you might use nix-env -i psc-package.

Windows

If you’re a Windows Chocolatey user, then you can install psc-package from the official repo [https://chocolatey.org/packages/psc-package]:

$ choco install psc-package

Travis

language: c
dist: trusty
sudo: required

cache:
 directories:
 - .psc-package
 - output

env:
 - PATH=$HOME/purescript:$HOME/psc-package:$PATH

install:
 - TAG=v0.13.6
 - PSC_PACKAGE_TAG=v0.6.2
 - wget -O $HOME/purescript.tar.gz https://github.com/purescript/purescript/releases/download/$TAG/linux64.tar.gz
 - tar -xvf $HOME/purescript.tar.gz -C $HOME/
 - chmod a+x $HOME/purescript
 - wget -O $HOME/psc-package.tar.gz https://github.com/purescript/psc-package/releases/download/$PSC_PACKAGE_TAG/linux64.tar.gz
 - tar -xvf $HOME/psc-package.tar.gz -C $HOME/
 - chmod a+x $HOME/psc-package

script:
 - ./travis.sh

See https://github.com/purescript/package-sets/blob/6f9f0b0eaea5e3718c860bc0cbaa651a554aad21/.travis.yml

Using Psc-Package from your project

Frequently used commands

install or update the dependencies listed in psc-package.json
$ psc-package install

install or update the package and add it to psc-package.json if not listed
$ psc-package install <package>

list available commands
$ psc-package --help

Create a project

A new package can be created using psc-package init. This will:

	Create a simple psc-package.json file based on the current compiler version

	Add the Prelude as a dependency (this can be removed later)

	Sync the local package database (under the .psc-package/ directory) by cloning any necessary repositories.

Add dependencies

To add a dependency, either:

	Use the install <package name> command, which will update the project configuration automatically, or

	Modify the psc-package.json file, and sync manually by running the install command (previously update).

Build a project

Active project dependencies and project source files under src can be compiled using the build command.

This command is provided as a convenience until external tools add support for psc-package. It might be removed in future.

Query the local package database

The local package database can be queried using the following commands:

	sources - list source directories for active package versions. This can be useful when building a command for, say, running PSCi.

	dependencies - list all transitive dependencies

Local package sets

In psc-package.json, you can set "source" to be a path to a local file:

{
 "name": "name",
 "set": "local",
 "source": "packages.json",
 "depends": [
 "aff"
]
}

From here, you can generate a local packages.json file in any way you please and use this package set directly. Consider if you use Dhall:

let upstream =
 https://github.com/purescript/package-sets/releases/download/psc-0.13.5-20200103/packages.dhall sha256:0a6051982fb4eedb72fbe5ca4282259719b7b9b525a4dda60367f98079132f30

in upstream
 ⫽ { calpis =
 { dependencies = ["prelude"]
 , repo = "https://github.com/justinwoo/purescript-calpis.git"
 , version = "v0.1.0"
 }
 }

This definition takes an existing release and adds the “calpis” package. Then we can generate a package set from this by running Dhall-JSON:

dhall-to-json –file packages.dhall –output packages.json

Then we can install this package expected:

$ psc-package install calpis
Installing calpis
psc-package.json file was updated

$ cat psc-package.json
{
 "name": "name",
 "set": "local",
 "source": "packages.json",
 "depends": [
 "aff",
 "calpis"
]
}

Usage with Nix

justinwoo/psc-package2nix [https://github.com/justinwoo/psc-package2nix] (Older)

Justin Woo has made a psc-package2nix project for generating nix derivations from Psc-Package dependencies: https://github.com/justinwoo/psc-package2nix

justinwoo/soba [https://github.com/justinwoo/soba] (Newer)

Because of the relative rarity in using psc-package with Nix, there is not excessive documentation on how to use this tool. See mostly the soba insdhall and soba nix commands in this tool.

Working with package sets

Please see the README in package-sets: https://github.com/purescript/package-sets

FAQ

Is there an easier way to manage my package sets than to edit packages.json? / How do I prepare a packages.json in some way other than editing JSON?

Yes. purescript/package-sets [https://github.com/purescript/package-sets] itself uses Dhall to programmatically prepare the package set, which are then normalized into packages.dhall on release: https://github.com/purescript/package-sets/releases. You can import this file in your own Dhall files and add/override packages to customize your package set.

How come I can’t install (some package) from the package set?

You should make sure you’re using the correct package-set release [https://github.com/purescript/package-sets/releases] and have updated the value of “set” in your psc-package.json file. See The psc-package.json format [https://github.com/purescript/psc-package#the-psc-packagejson-format] section for more details.

Why are my changes not updated in my package set?

Package sets are cached based on a git reference (e.g. tag or branch)
to the project directory .psc-package. If you are making changes to
a package set and reusing the package reference then you will need to
clear the cache for the changes to take effect.

$ rm -rf .psc-package
$ psc-package install

Can I use Psc-Package with Nix?

Yes, please see the page about Nix here: https://psc-package.readthedocs.io/en/latest/nix.html.

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Psc-Package Guide

 		
 Introduction

 		
 What is a Package Set?

 		
 The psc-package.json format

 		
 Installation

 		
 Any platform

 		
 npm

 		
 Linux/OSX

 		
 Nix

 		
 Windows

 		
 Travis

 		
 Using Psc-Package from your project

 		
 Frequently used commands

 		
 Create a project

 		
 Add dependencies

 		
 Build a project

 		
 Query the local package database

 		
 Local package sets

 		
 Usage with Nix

 		
 justinwoo/psc-package2nix (Older)

 		
 justinwoo/soba (Newer)

 		
 Working with package sets

 		
 FAQ

 		
 Is there an easier way to manage my package sets than to edit packages.json? / How do I prepare a packages.json in some way other than editing JSON?

 		
 How come I can’t install (some package) from the package set?

 		
 Why are my changes not updated in my package set?

 		
 Can I use Psc-Package with Nix?

_static/up.png

